影响因素 | 具体形式 | |
---|---|---|
气体浮力和对流 | 气体浮力的影响: 气体的密度与温度有关,随温度升高,样品周围的气体密度发生变化,从而气体的浮力也发生变化。所以,尽管样品本身没有质量变化,但由于温度的改变造成气体浮力的变化,使得样品呈现随温度升高而质量增加,这种现象称为表观增重。表观增重量可用公式进行计算。 对流的影响:它的产生,是常温下试样周围的气体受热变轻形成向上的热气流,作用在热天平上,引起试样的表观质量损失。 措施:为了减少气体浮力和对流的影响,试样可以选择在真空条件下进行测定,或选用卧式结构的热重仪进行测定。 | |
坩埚 | 大小和形状:坩埚的大小与试样量有关,直接影响试样的热传导和热扩散;坩埚的形状则影响试样的挥发速率。因此,通常选用轻巧、浅底的坩埚,可使试样在埚底摊成均匀的薄层,有利于热传导、热扩散和挥发。 坩埚的材质:通常应该选择对试样、中间产物、最终产物和气氛没有反应活性和催化活性的惰性材料,如Pt、Al2O3等。 | |
升温速率 | 升温速率对热重曲线影响的较大,升温速率越高,产生的影响就越大。因为样品受热升温是通过介质-坩埚-样品进行热传递的,在炉子和样品坩埚之间可形成温差。升温速率不同,炉子和样品坩埚间的温差就不同,导致测量误差。一般在升温速率为5和10℃/min时产生的影响较小。 升温速率对样品的分解温度有影响。升温速率快,造成热滞后大,分解起始温度和终止温度都相应升高。 升温速率不同,可导致热重曲线的形状改变。升温速率快,往往不利于中间产物的检出,使热重曲线的拐点不明显。升温速率慢,可以显示热重曲线的全过程。一般来说,升温速率为5和10℃/min时,对热重曲线的影响不太明显。 升温速率可影响热重曲线的形状和试样的分解温度,但不影响失重量。 慢速升温可以研究样品的分解过程,但我们不能武断地认为快速升温总是有害的。要看具体的实验条件和目的。当样品量很小时,快速升温能检查出分解过程中形成的中间产物,而慢速升温则不能达到此目的。的影响: 升温速率对热重曲线影响的较大,升温速率越高,产生的影响就越大。因为样品受热升温是通过介质-坩埚-样品进行热传递的,在炉子和样品坩埚之间可形成温差。升温速率不同,炉子和样品坩埚间的温差就不同,导致测量误差。一般在升温速率为5和10℃/min时产生的影响较小。 升温速率对样品的分解温度有影响。升温速率快,造成热滞后大,分解起始温度和终止温度都相应升高。 升温速率不同,可导致热重曲线的形状改变。升温速率快,往往不利于中间产物的检出,使热重曲线的拐点不明显。升温速率慢,可以显示热重曲线的全过程。一般来说,升温速率为5和10℃/min时,对热重曲线的影响不太明显。 升温速率可影响热重曲线的形状和试样的分解温度,但不影响失重量。 慢速升温可以研究样品的分解过程,但我们不能武断地认为快速升温总是有害的。要看具体的实验条件和目的。当样品量很小时,快速升温能检查出分解过程中形成的中间产物,而慢速升温则不能达到此目的。 | |
气氛 | 气氛对热重实验结果也有影响,它可以影响反应性质、方向、速率和反应温度,也能影响热重称量的结果。气体流速越大,表观增重越大。所以送样品做热重量分析时,需注明气氛条件。 热重实验可在动态或静态气氛条件下进行。所谓静态是指气体稳定不流动,动态就是气体以稳定流速流动。在静态气氛中,产物的分压对TG曲线有明显的影响,使反应向高温移动;而在动态气氛中,产物的分压影响较小。因此,我们测试中都使用动态气氛,气体流量为20mL/min。 气氛有如下几类:惰性气氛,氧化性气氛,还原性气氛,还有其它如CO2、Cl2、F2等。 | |
样品量 | 样品量多少对热传导、热扩散、挥发物逸出都有影响。样品量用多时,热效应和温度梯度都大,对热传导和气体逸出不利,导致温度偏差。样品量越大,这种偏差越大。样品用量应在热天平灵敏度允许的范围内,尽量减少,以得到良好的检测效果。而在实际热重量分析中,样品量只需要约5mg。 | |
样品粒度、形状 | 样品粒度及形状同样对热传导和气体的扩散有影响。粒度不同,会引起气体产物扩散的变化,导致反应速度和热重曲线形状的改变。粒度越小,反应速度越快,热重曲线上的起始分解温度和终止分解温度降低,反应区间变窄,而且分解反应进行得完全。所以,粒度影响在热重量分析中是个不可忽略。 |
业务流程 |
公司简介
© 2023 上海拉姆生物技术研发有限公司 all rights reserved